Figure 1. (a) Height image of F14H20 by Non-contact mode (b) Height image of F14H20 by Tapping mode (c) Line profile comparison
Conductive AFM is a commonly used technique to characterize the current distribution (e.g., the local conductance) of various sample types such as insulators, semiconductors, and conductors. In C-AFM, a bias voltage is applied to the sample during scanning, and the current flow is measured by the tip. However, the current not only depends on the local sample properties but also on the contact force and tip geometry. Accordingly, changes in the tip geometry due to wear can alter the measured current and thus reduce the reproducibility and accuracy of the measurement.
In contrast, PinPoint C-AFM can provide a welldefined electrical contact between the AFM tip and the sample by precisely controlling the contact force and data acquisition time. Moreover, by eliminating lateral shear forces, PinPoint C-AFM allows for high spatial resolution imaging with high reproducibility.
Figure 1 shows a comparison between conventional C-AFM and PinPoint C-AFM measurements on a vertically grown Zinc Oxide nanorods sample. Conventional C-AFM shows poor imaging quality as lateral forces cause damages to tip and sample, leading to reduced spatial resolution and imaging artifacts in height and current images. In contrast, PinPoint C-AFM mode produces sharp heightand current-images without artifacts, as presented in figure 1 (b).